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ABSTRACT

In this paper, we present a movel technique for embed-
ding digital “watermarks” into digital audio signals. Wa-
termarking is a technique used to label digital media by hid-
ing copyright or other information into the underlying data.
The watermark must be imperceptible or undetectable by the
user and should be robust to various types of distortion.
In our method, the watermark is generated by filtering a
PN-sequence with a filter that approzimates the frequency
masking characteristics of the human auditory system. It is
then weighted in the time domain to account for temporal
masking. We also discuss the detection of the watermark
and assess the robustness of our watermarking approach to
vartous signal manipulations.

1. INTRODUCTION

In today’s digital world, there is a great wealth of informa-
tion, which can be accessed in various forms: text, images,
audio, and video. It is easy to ensure the security of “ana-
log documents” and protect the author (author will be used
to also denote composer, artist, designer, etc.) from hav-
ing his work stolen or copied. For example, a painting is
signed by the artist, books and albums have copyright la-
bels imprinted inside the cover. The question is how do
you copyright or label digital information and preserve its
security without destroying or modifying the content of the
information.

One approach to data security is to use cryptographic
techniques. In cryptology, the information is scrambled us-
ing an encryption transformation before it is sent and the
information can be viewed after de-scrambling with the in-
verse transformation. A public-key cryptosystem can be
used to implement an electronic mail system in which mes-
sages are kept private and can be signed [1]. The security
of the encryption algorithm is based on the fact that no
one has discovered an algorithm which can factor compos-
ite numbers with two very large prime factors (on the order
of 200 digits) in a reasonable amount of time. Note that
cryptosystems restrict access to the document and do not
label or stamp them. Once the documents are decrypted,
the “signature” is removed and there is no proof of owner-
ship such as a label, stamp, or watermark [2]. Cryptology,
as discussed in [3], may be used for digital TV broadcast-
ing to provide conditional access for pay TV, watermarking
of images for copyright protection, and image signature for
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authentication. Note, that it is useful to consider the bi-
nary representation of these large numbers and their prime
factors as codewords for the signatures.

Data hiding, or steganography, refers to techniques for
embedding watermarks, signatures, tamper protection, and
captions in digital data. Captioning is an application which
requires a large amount of data; however, it need not be
invariant to removal because it contains extra non-critical
information which may be of benefit to the author and the
user. On the other hand, watermarking is an application
which embeds the least amount of data, but requires the
greatest robustness because the watermark is required for
copyright protection [4]. Note that data hiding does not re-
strict access to the original information as does encryption.

A watermark, or an invisible stamp, could be used to pro-
vide proof of “authorship” of a signal. Similarly, a signature
is used to provide proof of ownership and track illegal copies
of the signal. The watermark must be embedded in the data
such that it is émperceptible by the user [3, 4, 5]. Moreover,
the watermark should also have the following characteris-
tics:

e Inaudible;

e Statistical invisibility to prevent unauthorized de-
tection and/or removal;

e Similar compression characteristics as original signal;

e robustness to manipulation and signal processing op-
erations on the host data, e.g., filtering, resampling,
compression, noise, cropping, A/D-D/A conversions,
etc;

e Embedded directly in the data, not in a header;

e Support multiple watermarks, i. e. multiple
users,;

e Self-clocking.

The watermark should be characteristic of an author, but
a “pirate” should not be able to detect the watermark by
comparing several signals belonging to the same author.
The signal should be degraded when the watermark is re-
moved through unauthorized means.

In black and white document images, identification marks
are hidden by shifting characters, words, lines, etc. ran-
domly, in such a way that it is not observable upon inspec-
tion of the document [6, 7, 8, 9, 10]. These methods re-
stricted to text documents and are easily defeated as shown
by the authors.
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Other techniques for data hiding in images have been
developed. Two methods for watermarking images are pro-
posed in [11]. The first approach embeds a PN-sequence on
the least significant bit (LSB) of the data. This provides
easy and rapid decoding of the watermark or signature. In
the second approach, a PN-sequence (watermark) is added
to the LSB of the data. This is more difficult to decode,
providing more security. As with any approach which mod-
ifies the LSB of the data, however, these watermarks are
highly sensitive to noise and are easily corrupted.

In other coding schemes, the watermarks are made to
appear as quantization noise as the are embedded into the
images [12, 13]. The first method uses a predictive coding
scheme to embed the watermark into the image. In the sec-
ond method, the watermark is embedded image by dithering
the image based on the statistical properties image. These
scheme is not robust to attacks such as requantization and
cropping.

In [14], a watermark for an image is generated by modify-
ing the luminance values inside 8x8 blocks of pixels, adding
one extra bit of information to each block. The choice of the
modified block is secretly made by the encoder. In [15], a
2-D signature is generated and is embedded into the image
by modifying the intensity levels of the image, whose corre-
sponding signature pixels is one. A method using a JPEG
model based, frequency hopped, randomly sequenced pulse
position modulated code in [16] is robust to operations such
as lossy data compression, lowpass filtering, and color space
conversion. The watermarking problem is viewed as a prob-
lem in digital communications in [17]: a codeword is gener-
ated and used to modulate selected coefficients of the DCT
or wavelet transform of a block in an image.

Ref. [4] discusses data hiding in images by exploiting the
properties of the human visual system (HVS), such as sen-
sitivity to contrast as a function of spatial frequency, the
masking effect of edges, and sensitivity to changes in gray-
scale. In [4, 18], techniques for data hiding in images are
discussed. The first, an LSB method called “Patchwork,”
is a statistical technique which randomly chooses n pairs
(as,b;) of points in an image and increases the brightness of
a; by one unit while simultaneously decreasing the bright-
ness of b;. The second, texture block coding, hides data by
mapping a random texture pattern in an image to another
region in the image with a similar texture pattern. This
method is limited to images that possess large areas of ran-
dom texture. In [18], an encoding scheme is made resistant
to affine transformations (scaling, translations, rotations)
by embedding crosses in an image. Xerox DataGlyph tech-
nology [4, 19] adds a barcode to its images according to a
predetermined set of geometric modifications. In [20] data
is hidden in the chrominance signal of NTSC by exploit-
ing the HVS temporal over-sampling of color. Adelson [21]
proposes a scheme that embeds digital data into analog TV
signals. The method substitutes high-spatial frequency im-
age data for “hidden” data in a pyramid-encoded image.
However, the scheme is particularly susceptible to filtering
and rescaling.

A method similar to ours is proposed in [5], where the
N largest frequency components of an image are modified
by Gaussian noise. However, the scheme only modifies a
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subset of the frequency components and does not take into
account the HVS. The image watermark we propose here
embeds the mazimum amount of information throughout
the spectrum while still remaining perceptually invisible.
By placing the maximum amount of watermark information
in the signal, we maximize the probability of detection of the
watermark if the host signal has been distorted. Moreover,
it simultaneously minimizes probability of false alarm, i. e.
detection of a signature when one is not present or falsely
detecting another author’s signature.

Data hiding techniques have also been applied to audio
signals [4, 18]. In Direct Sequence Spread Spectrum Cod-
ing (DSSS), the signature, a binary codeword, is modulated
by both a PN-sequence and the audio signal using bi-phase
shift keying. It is then added to the original signal as addi-
tive random noise. The perceivable noise added to the sig-
nal can be reduced by adaptive coding and redundant cod-
ing. In Phase Coding, binary information is embedded in
the audio signal by modifying the phases of each frequency
component of the Discrete Short Time Fourier Transform
of the signal. Because the human auditory system (HAS) is
not highly sensitive to phase distortion, the data produce no
audible distortion. With Echo Coding, moderate amounts
of data are hidden as peaks in the spectrum and are robust
to analog transmission.

In this paper, we present a novel technique for embed-
ding digital watermarks into audio signals. The watermark
is generated by filtering a PN-sequence with a filter that
approximates the frequency masking characteristics of the
HAS. It is then weighted in the time domain to account
for temporal masking. Note that our approach is similar to
that of [4, 18] in that we shape the frequency characteristics
of a PN-sequence. However, unlike [4, 18] we use perceptual
masking models of the HAS to generate the watermark. In
particular, our scheme for images, audio, and video is the
only one that uses the frequency masking models of the
HAS/HVS along with the temporal masking models and
spatial masking models to hide the copyright information
in the signal [?].

While adding minimal information, the watermark should
create no audible distortion by exploiting the masking ef-
fects of the HAS. For audio applications, the watermark
should be robust in the presence of various types of colored
noise, lossy coding/decoding, D/A - A/D conversion, time-
scale modifications, and filtering; and, the signal should
be degraded when the watermark information is removed
through unauthorized means. Each author assigns to each
of his signals a unique secret codeword that only he can
detect in any time segment of the audio signal with a high
degree of certainty, even if the signal has been modified. We
provide a study of the detection performance of our water-
marking scheme. Our results indicate that the scheme is
robust to the types of signal manipulations listed above.

2. BACKGROUND

2.1. Masking

Masking is the effect by which a faint but audible sound
becomes inaudible in the presense of another louder au-
dible sound, masker [22]. The masking effect depends on
the both spectral and temporal characteristics of both the
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masked signal and the masker [22]. Frequency masking
refers to masking which occurs in the frequency domain.
If two signals which occur simultaneously are close together
in frequency, the stronger masking signal will make the
weaker masked signal inaudible. The masking threshold
of a masker depends on the frequency, sound pressure level
(SPL), and tone-like or noise-like characteristics of both the
masker and the masked signal [23]. It is easier for a broad-
band noise to mask a tonal, than for a tonal signal to mask
out a broadband noise. Moreover, higher frequency signals
are more easily masked. Temporal masking refers to both
pre- and post-masking. Pre-masking effects render weaker
signals inaudible before the stronger masker is turned on,
and post-masking effects render weaker signals inaudible
after the stronger masker is turned off. Pre-masking oc-
curs from 5-20 msec. before the masker is turned on while
post-masking occurs from 50-200 msec. after the masker is
turned off [23].

Using the frequency masking information of the HAS,
we can shape the spectral characteristics of the watermark.
Processing of impulsive signals such as castanets can cause
audible pre-echos. Similarly, we can use temporal masking
information to eliminate these effects.

2.2. Frequency Masking: MPEG-1 Psychoacoustic
Model

Audio signals consist of telephone quality speech, wideband
speech, and wideband audio. The frequency ranges for these
types of audio signals are 300-3400 Hz for telephone speech
signals, 50-7000 Hz for wideband speech range from 50-
7000 Hz, and 20-20000 Hz for high quality wideband audio.
The human ear acts as a frequency analyzer and can detect
sounds with frequencies which vary from 10 Hz to 20000 Hz.
The HAS can be modeled by a set of 26 bandpass filters
with bandwidths that increase with increasing frequency.
The 26 bands are known as the critical bands. The critical
bands are defined around a center frequency in which the
noise bandwidth is increased until there is just noticeable
difference in the tone at the center frequency. Thus if a
faint tone lies in the critical band of a louder tone, the faint
tone will not be perceptible.

Frequency masking models have already been defined for
the perceptual coding of audio signals because it is not nec-
essary to code perceptually irrelevant information. In this
work, we use the masking model defined in MPEG Au-
dio Psychoacoustic Model 1, for layer I [24]. The masking
method is summarized as follows for a 32 kHz sampling rate
[24, 25]. The MPEG model also supports sampling rates of
44.1 kHz and 48 kHz.

e First Step:
Each 16 ms segment of the signal s(n), N=512 samples,
is weighted with a Hann window, h(n):

h(n) = —'2/3[1 — COS(ZW%)] (1)

The power spectrum of the signal s(n) is calculated as
follows:
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100

S(k) = 10+ logyo [ S s(r)h(m) exp (~j2m )|’
= (@)

The maximum is normalized to a reference sound pres-
sure level of 96dB.

spectrum of the signal

50 100 150 200 250 300

Figure 1. First step

Second Step: Identify Tonal Components Tonal (sinu-
soidal) and non tonal (noisy) components are identified
because their masking models are different.

A tonal component is a local maximum of the spectrum

(S(k)> S(k+1)et S(k) > S(k—1) ) satisfying:

S(k)— S(k+j) > 7dB
jE[-2,42]if2< k < 63
jE[-3,—-2,+2,+3] if 63 < k < 127
jE[=6,..., =2, 42, ..., +6] if 127 < k < 250

We add to its intensity those of the previous and follow-
ing component. Other tonal components in the same
frequency band are no longer considered.

Non-tonal components are made of the sum of the in-
tensities of the signal components remaining in each of
the 24 critical bands between 0 and 15500 Hz. (The
auditory system behaves as a bank of bandpass fil-
ters, with continuously overlapping center frequencies.
These “auditory filters” can be approximated by rect-
angular filters with critical bandwidth increasing with
frequency. In this model, the audible band is therefore
divided into 24 non-regular critical bands.)

Third Step: Remove Masked Components

Those components below the absolute hearing thresh-
old and tonal components separated by less than 0.5
Barks.

Fourth Step: Individual and Global Masking Thresh-
olds

In this step, we account for the frequency masking ef-
fects of the HAS. We need to discretize the frequency
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tonal and non tonal components
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Figure 3. Third step

axis according to the hearing sensitivity which is bet-
ter for low frequencies and express frequencies in Barks.
Masking curves are then almost linear (with different
lower and upper slopes depending on the distance be-
tween the masked and the masking component) and
depend on a masking index different for tonal and non-
tonal components. We use fi to denote the set of fre-
quencies present in the test signal. The global masking
threshold for each frequency fo takes into account the
absolute hearing threshold S, and the masking curves
P, of the N; tonal components and NV,, non-tonal com-

ponents:

Sm(f2) = 10 +log,[10%*U2)/10
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Ni
+ Z 10P2(f2,f1 ,P1)/10
j=1

Np
+ Z 10P2(f2,f1,P1)/10] (3)

Jj=1

The masking threshold is then the minimum of the lo-
cal masking threshold and the absolute hearing thresh-
old in each of the 32 equal width subbands of the spec-
trum.

To be inaudible, the watermark must fall below the
masking threshold.

final masking threshold
100 T T T

50 100 150 200 250 300

Figure 4. Fourth step

2.3. PN-sequences

PN-sequences form the basis of our watermarking scheme
because of their noise-like characteristics, resistance to in-
terference, and good auto-correlation properties. Spread
spectrum communication systems use pseudo-noise (PN) se-
quences to modulate transmitted data into noise-like wide-
band signals so they blend into the background [26]. Spread
spectrum signals are resistant to interference such as unin-
tentional interference, channel noise, multiple users, multi-
path interference, or intentional jammers [26].

PN-sequences are periodic noise-like binary sequences
generated by feedback shift register of fixed length m [26].
The feedback is linear, that is, it consists of only modulo-2
adders. This prevents the zero state from occuring, which
provides an output of only zeros. The maximum period of a
PN-sequence is N = 2™ — 1 [26]. The feedback connections
for maximal length PN-sequences with m varying from 1 to
89 are provided in [27].

Modulo-2
Adder

Flip-flop

Output
Clock Sequence

Figure 5. Shift register with m=9, N=511

Maximum length PN-sequences, also called m-sequences,
are used in our watermarking scheme because they pro-
vide an easy way to generate a unique code for an author’s
identification. Moreover, like random binary sequences,
m-sequences have 0’s and 1’s occur with equal probabili-
ties. Also, the number of 1’s is always one greater than
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the number of 0’s. M-sequences also have good autocorre-
lation properties [26]: the autocorrelation function (ACF)
has period N and it is binary valued. The ACF has peaks
equal to 1 at 0, N, 2N, etc. and is approximately 1/N else-
where. Because of these periodic peaks, the m-sequence is
self-clocking. This allows the author to synchronize with the
embedded watermark during the detection process. This is
important if the signal is cropped and resampled.

3. WATERMARK DESIGN

Each audio signal will be watermarked by a unique code-
word. Our method uses PN-sequences to watermark the
audio signal as suggested in [11]. In order to take advan-
tage of the frequency masking characteristics of the HAS,
we shape the PN-sequence with the masking threshold of
the signal in frequency domain. But we must also account
for temporal masking effects. The watermark should be
hidden in the signal according to its energy. We do not
want to add too much information where the signal has
low energy; Otherwise, the information that is introduced
will become audible. This is because a fixed length Fourier
transform cannot have both good time and good frequency
localization. If high energy signal has a time duration much
less than the window length, its energy is spread across all
frequencies for the duration of the window. Therefore, we
weight the watermark in time with the energy of the signal’s
envelope.

To generate the watermark, we first calculate the mask-
ing threshold of the signal using the MPEG Audio Psy-
choacoustic Model 1, as described above. The masking
threshold is determined for audio segments of 512 samples,
weighted by a Hanning window, with 50% overlap in suc-
cessive blocks. It is then approximated with a 10** order
all-pole filter, M(w), using a least squares criterion. The
PN-sequence seq(w), is filtered with the approximate mask-
ing filter, M (w), in order to ensure that the spectrum of the
watermark is below the masking threshold, as shown in Fig.
6. In this example, we used a m-sequence with m = 9.

80

— masking threshold
watermark

Amplitude in dB

I I I I
50 100 150 200 250 300
Normalized Frequency

Figure 6. Filtered PN-sequence

Manipulating signals with sudden changes in energy, such
as castanets, may lead to pre-echos. The watermark com-
puted below the masking threshold in frequency domain, is
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spread in time on the block of 512 samples. If there is a
sudden change of amplitude inside the block, high energy
regions of the signal will spread into the low energy regions
of the signal, creating audible distortion. The audible result
is noise preceding the sudden changes in the signal. There-
fore, the watermark, w(n) is weighted in the time domain
with the squared and normalized envelope of the signal.

’LU(’I'L) — w(n) % Isrwelope(n)Q

2
el envelope(k)

The filtered watermark is then multiplied by a scale fac-
tor for the following reason. To make the detection of the
watermark easier, we would like to increase the power of the
watermark, while keeping its spectrum below the masking
threshold. The “computed watermark” is smaller than the
quantization step size and, therefore must be scaled such
that it is not lost in the quantization process when it is
written as a 16 bit integer. We have found that amplify-
ing the watermark by 40dB before weighting the signal in
time gives good results. Weighting in time lowers the wa-
termark below the masking threshold often enough for it to
be unhearable.

Figures 7 and 8 show our technique for watermarking au-
dio signals. In our basic watermarking scheme, we filter a
codeword, with a filter which approximates the filter char-
acteristics of the HAS. This result is weighted in time with
the envelope of the original audio signal to prevent the in-
troduction of temporal effects such as pre-echoes. This is
then added to the original signal giving

watermark firststage = (0r1ginalsignal) + w,

where w denotes the filtered PN-sequence.

In order for the watermark to be robust to cod-
ing/decoding at low bit rates, we must generate wes as
shown in Fig 8. This includes the coding/decoding effects
in the watermark.

Wed = (watermarkfirststage)64 - (Originalsignal)M

In our notation, the subscript 64 refers to a signal which
has been coded/decoded at a bit rate of 64 kbits/second. A
recent technical report [5] showed us that it is necessary to
place the watermark in the perceptually significant compo-
nents of the signal, i. e. high frequencies. This is contained
in coding error of the original audio signal. Therefore, we
add the filtered PN-sequence to the coding error,

Werr = (0riginalsignal) — (originalsignal)ea.
Thus the final watermark is given by
wat = wes + Werr-

Figures 9 and 10 show the various stages of watermarking
and the final watermarked signal for two different musical
signals. In Fig. 9, the original signal is the beginning of
the third movement of the sonata in B flat major D 960 of

Schubert, interpreted by Vladimir Ashkenazy. In Fig. 10,
the original signal is a castanet signal.
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Frequency
Audio_ | Hanning FFT Masking
Signal | Window Information

Quantization — W+
Scale origina signal

Factor

Extract
Envelope|

Figure 7. Watermark Generator: First stage for
audio

Audio Code/Decode) } Coding | Watermark Werr + ~wat * signdl +
Signd at low 5 Generator + H— .
bit rates rror First Stage + watermarl
we4
Watermark Code/Decode .
|— Generator at low e
First Stage + bit rates i
Code/Decode
at low
bit rates

Figure 8. Full Watermark Generator for audio
4. DETECTION OF THE WATERMARK

An unauthorised user of the signal would try to make detec-
tion of the watermark impossible by adding colored noise,
filtering, coding, D/A - A/D converting, time compressing,
etc. For the detection problem, it is assumed that the origi-
nal signal is available to the detector along with the author’s
PN-sequence.

We want to be able to decide whether the difference be-
tween the “pirated” audio signal r(t) and the original audio
signal s(t) is only noise n(t) or the jammed (corrupted) wa-
termark w'(t) and noise. The hypotheses to test are the
following :

e Hy:z(t) =r(t) — s(t) = n(t)

o Hy:z(t) =71(t) —s(t) = w'(t) + n(t)

Note that the watermark is inaudible and that we are in-
terested in cases where the unauthorized distortion added
to the watermarked signal is also inaudible. As suggested
in [3], we can use the correlation of x with w to detect
the presence of a jammed watermark, by comparing it to
a threshold. Our study indicates that it is possible to reli-
ably detect the watermark when 50 or more blocks of 512
samples of the difference signal are used, and for a detec-
tion threshold around 0.5. Note that this corresponds to
0.8 seconds of the audio signal (at 32 kHz sampling rate).

We can then calculate the probabilities of detection and
false alarm for each segment of 50*512 samples, after de-
termining the optimal threshold. Note also that, even if
the watermark is generated with the same PN-sequence for
the whole original signal, the watermark changes across the
signal, depending on the masking threshold and the energy
of the signal for each block of 512 samples.

The author should choose different PN-sequences for each
of his audio signals, so that his signature cannot be found by
comparing or correlating several of his audio signals. Note
also that it is possible to make the watermark difficult to
detect by an unauthorized user, by using long PN-sequences
or embedding long cryptographic digital signatures.
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Figure 9. Various watermark stages for Schubert in
time domain
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Figure 10. Various watermark stages for castanet
signal in time domain

4.1. Robustness to additive noise

We have studied an approximation of the worst possible
additive distortion of the watermark: a noise which follows
the masking threshold of the watermarked signal. This type
of distortion is a good worst case model for distortions due
to coding and D/A-A /D conversions.

The noise we used follows the masking threshold of the
watermarked signal, s, (t) and also is weighted in time do-
main by the energy of the signal. The colored noise is
computed in the same way as the watermark: the mask-
ing threshold is first shifted +40dB and multiplied by the
FFT of a gaussian white noise. The resulting noise is then
weighted in time by the squared and normalized envelope
of the signal. After requantization, we filter this shaped
noise by the masking threshold and requantize it again in
time. The result is almost completely inaudible and is an
approximation of the maximum noise we can add below the
masking threshold.

We have performed detection tests on an audio segment
of length 50*512 samples, with and without watermark, cor-
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correlations with the watermark
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Figure 11. Detection of the watermark in a noisy
Schubert file with 50 blocks
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Figure 12. final noise after weighting in time, re-
quantization, filtering by the mask and last requan-
tisation

rupted by the worst case noise, using 12300 different noises.
The probabilities of detection and false alarm were found
to be 1 and 3.1285e-04, respectively, for a threshold of 0.5.
The same test was performed on two other signals: a cas-
tanet and a clarinet piece. Castanets are one of those signals
prone to pre-echoes.

4.1.1. FEzample: Robustness to coding/decoding

We also studied the robustness of the watermark to the
coding/decoding of the audio signal. The coding/decoding
was performed using a software implementation of the
ISO/MPEG-1 Audio Layer III coder [28] with several differ-
ent bitrates (64 kbits/s, 128 kbit/s, 160 kbit/s, 224 kbit/s
and 320 kbit/s). The Schubert signal is sampled at 32 kHz
and the castanet and clarinet signals are sampled at 44 kHz.

Our study indicates that it is possible to reliably detect
the watermark when 100 or more blocks of 512 samples of
the difference signal are used. Note that this corresponds
to 0.8 seconds of the audio signal.

Tables 1, 2, 3, 4, and 5 below gives the probabilities of
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detection and false alarm for for the final watermark in the
following signals: the Schubert signal, a castanet signal,
and a clarinet signal. The watermarks were generated with
the coding/decoding performed at bit rates of 64, 128, 256,
224, and 320 kbit/s. Note that the probability of detection
is 1 or nearly 1 in all cases, and equally important, the
probability of false alarm is 0 in all cases.

The detection is also robust when multiple watermarks
were present in the audio signal, as shown in Tables 6,
7, and 8. The watermarks were generated with the cod-
ing/decoding performed at bit rates of 64, 128, and 160
kbit/s. Note that the probability of detection 1 in all cases,
and equally important, the probability of false alarm is 0 in
all cases.

We found the that the watermark in the presence of other
watermarks as shown in the table was robust to resampling.
Specifically, the watermark was still detectable when the
sampling rate is doubled and jamming noise is added to the
signal.

5. CONCLUSIONS

Our method for the digital watermarking of audio signals
extends the previous work on images. Our watermarking
scheme consists of a maximal length PN-sequence filtered
by the approximate masking characteristics of the HAS and
weighted in time, our watermark is imperceptibly embed-
ded into the audio signal and easy to detect by the author
thanks to the correlation properties of PN-sequences. Our
results show that our watermarking scheme is robust in the
presence of additive noise, lossy coding/decoding, resam-
pling, and time-scaling.
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Table 1. Detection of watermark — coding/decoding
at 64 kbit/s.

Audio Signal Schubert | castanets | clarinet
Detection Thresh. 0.74 0.525 0.62
detect 1 1 1
falsealarm 0 0.0008 0.0147
# of different noises | 2784 2385 2014

Table 2. Detection of watermark — coding/decoding
at 128 kbit/s.

Audio Signal Schubert | castanets | clarinet

Detection Thresh. 0.74 0.525 0.62
detect 0.9996 1 1
falsealarm 0 0 0

# of different noises | 3784 2385 2014

Table 3. Detection of watermark — coding/decoding
at 160 kbit/s.

Audio Signal Schubert | castanets | clarinet

Detection Thresh. 0.74 0.525 0.62
detect 1 1 1

Pfalsealarm 0 0 0

# of different noises | 2784 2385 2014

Table 4. Detection of watermark — coding/decoding
at 224 kbit/s.

Audio Signal Schubert | castanets | clarinet

Detection Thresh. 0.74 0.525 0.62

Pictect 0.9993 1 1
falsealarm 0 0 0

# of different noises | 2784 2385 2014

Table 5. Detection of watermark — coding/decoding
at 320 kbit/s.

Audio Signal Schubert | castanets | clarinet
Detection Thresh. 0.74 0.525 0.62
Pdm‘e(‘f 0.9993 1 1
falsealarm 0 0 0
# of different noises | 2784 2385 2014
Table 6. Multiple watermark detection — cod-

ing/decoding at 64 kbit/s.

Audio Signal Watermark o | Watermark b
Detection Thresh. 0.71 0.50
P(lpfp(‘f u9968 1
falsealarm 0.0016 0
7 of different noises | 1242 1242
Table 7. Multiple watermark detection — cod-

ing/decoding at 128 kbit/s.

Audio Signal Watermark a | Watermark b
Detection Thresh. 0.71 0.50
PdeE‘(‘t 1 1
falsealarm 0.0016 0
# of different noises | 1242 1242
Table 8. Multiple watermark detection — cod-

ing/decoding at 160 kbit/s.

Audio Signal

Watermark a

Watermark b

Detection Thresh. (1).71 (1].50
detec
e orm 0.0016 0.000852
7 of different noises | 1242 1242

17:02



